MATEMÁTICAS I - VESPERTINO E1


MATEMÁTICAS I - VESPERTINO E1

MATEMÁTICAS I

maestromemo@gadi.edu.mx


EVALUACIÓN

                                                  35% Tareas
                                                  30% Examen
                                                  35% Participaciones en clase

Realizar portada, con porcentajes de evaluación.

OBJETIVOS: Reconocerá a los polinomios, como expresiones algebraicas y realizará operaciones, aplicadas a los polinomios.

CLASE 1

INICIO CLASE, 22/JULIO/20

REPASO DE OPERACIONES BÁSICAS














FIN CLASE, 22/JULIO/20



CLASE 2

INICIO CLASE, 24/JULIO/20

ÁLGEBRA

 EXPRESIONES ALGEBRAICAS

SIMPLIFICACIÓN DE TÉRMINOS: Dos ó más términos semejantes se pueden simplificar en uno solo, operando solo en sus coeficientes.
Ejemplo 3.3: Simplificar:       a) 4x2y + 3x2y – 2x2y
                                            b) 3x + 2y – x + 5y
                                      c) 3x + 2y – 1
                                            d) 3xy –y2 – 4 – xy + 2y2 – 2xy

Solución:
a) Todos los términos son semejantes por lo que se simplifican realizando la operación en sus coeficientes: 
(4 + 3 – 2)x2y = 5x2y
b) Los términos semejantes son 3x y –x y por otro lado 2y e 5y, por lo que el resultado es:
3x + 2y – x + 5y = 3x – x + 2y + 5y = 2x + 7y.
c) Ningún término es semejante por lo que el resultado es: 3x + 2y – 1
d) Juntando los términos semejantes queda: 3xy – xy – 2xy – y2 + 2y2 – 4= 0 + y2 – 4 = y2 – 4

SIMBOLOS DE AGRUPACIÓN
Los símbolos de agrupación más utilizados son: Paréntesis ( ), Corchetes  [ ], Llaves  { }.
Todos los signos de agrupación son equivalentes, y para eliminarlos se aplican algunos teoremas, en particular las leyes de los signos.

Ejemplo 3.4: Simplificar        3 – (3x – 2) + ( 5 – 2x) – (3x + 3) + (9 – 2x)

Solución:      Suprimiendo los signos de agrupación queda:     3– 3x + 2 + 5 – 2x – 3x – 3 + 9 – 2x =
                                                                                          = -3x – 2x – 3x – 2x + 3 + 2 + 5 – 3 + 9
                                                                                          = -10x +16

Ejemplo 3.5: Simplificar:    x + (y – z) –  [(3x – 2y) + z] + [x – (y – 2z)]

Solución:   Suprimiendo los paréntesis       x + y – z –  [3x – 2y + z] + [x – y + 2z]     
                  Suprimiendo los corchetes     = x + y – z – 3x + 2y – z + x – y + 2z         
                   Simplificando                         = -x + 2y

Actividades a realizar 1.1
Simplificar las expresiones siguientes
1)    6x – 10x
2)    -5ab – 7ab + 2.5
3)     4.9y + 5.3y – 2.8y
4)    4a – 2a + 5a
5)    x – 5 – 10x + 5
6)    4(z + 5) + 8z
7)    9y + 3 + 11y + 4
8)    3x2 + 2x – 3x2 + 9
9)

MULTIPLICACIÓN
Regla de los exponentes para la multiplicación de potencias:   x xm = xn+m

Ejemplos:     xx4 = x7,      y y3 = y4,    z z6 z3 = z10     

Para realizar la multiplicación de monomios, se multiplican los coeficientes numéricos (incluido signo), las literales semejantes (de acuerdo al teorema anterior) y si hay mas literales, solo se agregan al resultado.

Ejemplo 3.6: Multiplicar               7x2y3  por  -8x3y5z2
Solución:        (7x2y3) (-8x3y5z2) = -56x5y8z2

Ejemplo 3.7: Multiplicar:           -25a5c4  por -24a3b4c

Solución:        (-25a5c4) (-24a3b4c) =  600a8b4c5

Para multiplicar un monomio por un polinomio, se aplica el postulado distributivo.  
a (b + c) = ab + ac

Ejemplo 3.8: Multiplicar -5x3y por 3x2 –  5xy + 4y2

Solución: El monomio -5x3y multiplica a cada término del polinomio
-5x3y (3x2 – 5xy + 4y2) = -15x5y + 25x4y2 – 20x3y3

Ejemplo 3.9: Multiplicar  8xy4z por -9x3z 5y4z + 6

Solución: (8xy4z5) (-9x3z2 – 5y4z + 6) = - 72x4y7z7 – 40xy8z6 + 48xy4z5

Para multiplicar dos polinomios se aplica la propiedad distributiva reiteradamente, simplificando los términos resultantes.


Actividades a realizar 1.2
      Resolver las siguientes operaciones.

1.      (2x – 1) (3x + 2)
2.      (5y – 3) ( 8y – 6)
3.      (3x – 9y) (2z – 5w)
4.      (4a + 8) (7a + 9)
5.      (6b + 5) (9b – 10)
6.      (3x – 9y) (2z – 5w)
7.     

8.      (c3 – 2d5) (3c4 + ½ d6)


FIN CLASE, 24/JULIO/20



CLASE 3

INICIO CLASE, 27/JULIO/20

DIVISIÓN ALGEBRAICA


TAREA:



INICIO CLASE, 27/JULIO/20










CLASE 4

INICIO CLASE, 29/JULIO/20

REPASO; DE SUMA Y RESTA ALGEBRAICA



PARTICIPACIÓN



TAREA

REPASO; MULTIPLICACIÓN ALGEBRAICA






FIN CLASE, 29/JULIO/20





INICIO CLASE, 31/JULIO/20

TRINOMIO DE LA FORMA  x2 + b x + c = 0


 TRINOMIO DE LA FORMA  ax2 + b x + c = 0









Introducción Trinomios

Trinomios F.G. 

Trinomios F.G. y C.M.



FIN CLASE, 31/JULIO/20









INICIO CLASE, 3/AGOSTO/20

EXAMEN

FIN CLASE, 3/AGOSTO/20








Comentarios